Icon Turing Drawings

 

Icon Lost Child Announcement

 

Icon Shelter

 

Icon Data Science, how hard can it be?

 

Icon Denki Furo

 

Icon In Defence of the Unitype

 

Icon Maya Velocity Node

 

Icon Sandy Denny

 

Icon What type of Machine is the C Preprocessor?

 

Icon Which AI is more human?

 

Icon Gone Home

 

Icon Thoughts on Japan

 

Icon Can Computers Think?

 

Icon Counting Sheep & Infinity

 

Icon How Nature Builds Computers

 

Icon Painkillers

 

Icon Correct Box Sphere Intersection

 

Icon Avoiding Shader Conditionals

 

Icon Writing Portable OpenGL

 

Icon The Only Cable Car in Ireland

 

Icon Is the C Preprocessor Turing Complete?

 

Icon The aesthetics of code

 

Icon Issues with SDL on iOS and Android

 

Icon How I learned to stop worrying and love statistics

 

Icon PyMark

 

Icon AutoC Tools

 

Icon Scripting xNormal with Python

 

Icon Six Myths About Ray Tracing

 

Icon The Web Giants Will Fall

 

Icon PyAutoC

 

Icon The Pirate Song

 

Icon Dear Esther

 

Icon Unsharp Anti Aliasing

 

Icon The First Boy

 

Icon Parallel programming isn't hard, optimisation is.

 

Icon Skyrim

 

Icon Recognizing a language is solving a problem

 

Icon Could an animal learn to program?

 

Icon RAGE

 

Icon Pure Depth SSAO

 

Icon Synchronized in Python

 

Icon 3d Printing

 

Icon Real Time Graphics is Virtual Reality

 

Icon Painting Style Renderer

 

Icon A very hard problem

 

Icon Indie Development vs Modding

 

Icon Corange

 

Icon 3ds Max PLY Exporter

 

Icon A Case for the Technical Artist

 

Icon Enums

 

Icon Scorpions have won evolution

 

Icon Dirt and Ashes

 

Icon Lazy Python

 

Icon Subdivision Modelling

 

Icon The Owl

 

Icon Mouse Traps

 

Icon Updated Art Reel

 

Icon Tech Reel

 

Icon Graphics Aren't the Enemy

 

Icon On Being A Games Artist

 

Icon The Bluebird

 

Icon Everything2

 

Icon Duck Engine

 

Icon Boarding Preview

 

Icon Sailing Preview

 

Icon Exodus Village Flyover

 

Icon Art Reel

 

Icon LOL I DREW THIS DRAGON

 

Icon One Cat Just Leads To Another

Six Myths About Ray Tracing

Created on May 6, 2012, 6:21 p.m.

For a few years now people have been holding up Ray Tracing as the next big thing for computer games - saying that once we reach the processing power needed all games will be Ray Traced and we'll finally get cool effects like reflections and global illumination.

Many people have misunderstood notions of Ray Tracing and I don't blame them. It is a word which can mean a lot of things. In an attempt to give some clarity - here are six myths about Ray Tracing and the reasons why they are not true.



1. Ray Tracing is what they use in animated movies

Most CGI in movies from Lord of the Rings to Finding Nemo is rendered using RenderMan, a program developed and maintained by Pixar.

RenderMan has a huge array of tools but by far the bulk of the work is done via a normal Scanline Renderer which supports dynamic subdivision and programmable shaders - much like is seen in modern video games. Whole scenes are rendered purely using this system and only for particular effects are the alternatives rolled out.

For global illumination, reflections, and other complicated effects RenderMan provides a type of Photon Mapping. The scene is subdivided recursively into blocks and photons emitted. Then there is a Ray Collection phase that happens independently for each block.

This system allows them to work on scenes with large polygon and texture data which normally would not fit in main memory (the main reason standard ray tracing was not an option).

Pixar show us that great looking results don't automatically mean Ray Tracing, which has major (though not insurmountable) issues with memory and cache.

[Source]


2. Ray Tracing scales better than Scanline Rendering

In general Ray Tracing is well known for giving diminishing returns. For an incremental improvement in accuracy, Ray Tracing requires you shoot out twice the number of rays. Even with extensions like Photon Mapping this still holds to some degree, and holds completely when we talk about memory and cache costs.

It is also common to hear that Ray Tracing is better suited to parallelism because each pixel is computed individually. Scanline rendering can only compute in parallel the pixels for each triangle in turn. This is true, but each ray trace is still propotional to the number of triangles in the scene and in reality computing each pixel absolutely in parallel only seeks to destroy the cache. [More]

As well as being kind to the cache, Scanline Rendering has a large number of parallel stages which Ray Tracing lacks. This means Scanline Rendering can be pipelined and throughput is maximised. Scanline Rendering may not be able to capture such a broad range of effects so easily, but it really does have a remarkable computational complexity and in practice Ray Tracing isn't any better.


3. Ray Tracing is more physically accurate

This is a difficult one. Light, materials, and the physics involved are all so complicated that the physical accuracy of any of our models used in current rendering is generally pretty bad.

The way we imagine Ray Tracing to be more physically accurate, is that we like to imagine a ray of light being traced through the air and intersecting with a surface. This is already the simplest part of the model, and a Scanline Renderer does it too, just in a different way.

The complex part of rendering is what happens to the ray after it hits the surface. For this none of our models are really that accurate and we use the same models for Scanline Rendering as in Ray Tracing. The truth here is that Ray Tracing is much more algorthmically simple than scanline rendering, which although obviously a huge advantage to implementation, doesn't mean it is more physically accuracy.


4. Ray Tracing allows for more dynamic elements in a scene

Unfortunately the opposite of this is true. Effective Ray Tracing requires you hold large structures subdividing the scene into sections. This has a terrible price to pay on memory but even worse is that if any movement occurs in the scene these structures have to be updated; a non-trivial task.

Similarly, smoke, fire, water and other weird effects lend themselves no more naturally to Ray Tracing than to Scanline Renderer. They have an odd set of material properties which cannot be easily simulated even via physics and often an artist approximation is best.


5. Ray Tracing can provide Unlimited Detail

Unlike the image which is painted by Euclidean Games, the Graphics Programming community is open and sharing. Just look toward SIGGRAPH - one of the biggest conferences in the world. This idea of a secret industry investment in polygons and rejecting Voxels is just crazy.

It seems Euclidean Games, unlike their contemporaries, had no intention of sharing their creation or publishing a paper (something very common for Graphics Programmers in Game Development) - and instead are happy to make patronising comments about developers use polygons on youtube.

Without going into the technical details (which I'm sure you can look up) Unlimited Detail has recieved crazy hype and should've been ringing your "too good too be true bells" before the video even started. Unlimited detail has all of the issues I've outlined above and more. I think it will be a long time before we see a full product using the technology.


6. Ray Tracing is The Future

It really is hard to tell what the future will be - and Ray Tracing is certainly a key thing to have in any Graphical Programming toolkit. But polygons and Scanline Rendering have served us pretty well so far and I'm sure they have a large number of years left in them.

As with most things, what will probably happen is there will emerge systems using a healthy mix and mash up of techniques with an added blend of nothing we've seen before. The future resides in algorithms, not buzzwords, and I'm sure it will be exciting whatever it is.

github twitter rss