Icon ASCII : A Love Letter


Icon My Neural Network isn't working! What should I do?


Icon Phase-Functioned Neural Networks for Character Control


Icon 17 Line Markov Chain


Icon 14 Character Random Number Generator


Icon Simple Two Joint IK


Icon Generating Icons with Pixel Sorting


Icon Neural Network Ambient Occlusion


Icon Three Short Stories about the East Coast Main Line


Icon The New Alphabet


Icon "The Color Munifni Exists"


Icon A Deep Learning Framework For Character Motion Synthesis and Editing


Icon The Halting Problem and The Moral Arbitrator


Icon The Witness


Icon Four Seasons Crisp Omelette


Icon At the Bottom of the Elevator


Icon Tracing Functions in Python


Icon Still Things and Moving Things


Icon water.cpp


Icon Making Poetry in Piet


Icon Learning Motion Manifolds with Convolutional Autoencoders


Icon Learning an Inverse Rig Mapping for Character Animation


Icon Infinity Doesn't Exist


Icon Polyconf


Icon Raleigh


Icon The Skagerrak


Icon Printing a Stack Trace with MinGW


Icon The Border Pines


Icon You could have invented Parser Combinators


Icon Ready for the Fight


Icon Earthbound


Icon Turing Drawings


Icon Lost Child Announcement


Icon Shelter


Icon Data Science, how hard can it be?


Icon Denki Furo


Icon In Defence of the Unitype


Icon Maya Velocity Node


Icon Sandy Denny


Icon What type of Machine is the C Preprocessor?


Icon Which AI is more human?


Icon Gone Home


Icon Thoughts on Japan


Icon Can Computers Think?


Icon Counting Sheep & Infinity


Icon How Nature Builds Computers


Icon Painkillers


Icon Correct Box Sphere Intersection


Icon Avoiding Shader Conditionals


Icon Writing Portable OpenGL


Icon The Only Cable Car in Ireland


Icon Is the C Preprocessor Turing Complete?


Icon The aesthetics of code


Icon Issues with SDL on iOS and Android


Icon How I learned to stop worrying and love statistics


Icon PyMark


Icon AutoC Tools


Icon Scripting xNormal with Python


Icon Six Myths About Ray Tracing


Icon The Web Giants Will Fall


Icon PyAutoC


Icon The Pirate Song


Icon Dear Esther


Icon Unsharp Anti Aliasing


Icon The First Boy


Icon Parallel programming isn't hard, optimisation is.


Icon Skyrim


Icon Recognizing a language is solving a problem


Icon Could an animal learn to program?




Icon Pure Depth SSAO


Icon Synchronized in Python


Icon 3d Printing


Icon Real Time Graphics is Virtual Reality


Icon Painting Style Renderer


Icon A very hard problem


Icon Indie Development vs Modding


Icon Corange


Icon 3ds Max PLY Exporter


Icon A Case for the Technical Artist


Icon Enums


Icon Scorpions have won evolution


Icon Dirt and Ashes


Icon Lazy Python


Icon Subdivision Modelling


Icon The Owl


Icon Mouse Traps


Icon Updated Art Reel


Icon Tech Reel


Icon Graphics Aren't the Enemy


Icon On Being A Games Artist


Icon The Bluebird


Icon Everything2


Icon Duck Engine


Icon Boarding Preview


Icon Sailing Preview


Icon Exodus Village Flyover


Icon Art Reel




Icon One Cat Just Leads To Another

Neural Network Ambient Occlusion

Created on Oct. 4, 2016, 11:26 a.m.

At SIGGRAPH Asia this year I am presenting Neural Network Ambient Occlusion. This short paper uses Machine Learning to produce ambient occlusion from the screen space depth and normals. A large database of ambient occlusion is rendered offline and a neural network trained to produce ambient occlusion from a small patch of screen space information. This network is then converted into a fast runtime shader that runs in a single pass and can be used as a drop-in replacement to other screen space ambient occlusion techniques.

I've provided the learned network weights (represented as filter images) and shader code below. Additionally included in the code & data downloads are good implementations of SSAO, SSAO+, SAO, and HBAO for comparison which also may be of interest to people.

Update: Since this paper was accepted I've found the performance can be significantly improved by adopting the spiral based sampling method used in Scalable Ambient Obscurance (SAO). This produces good results with far fewer samples and reduces the runtime of NNAO by over half to around 1.5ms. This update is included in the code and data linked before, as well as an additional comparison to SAO.

WebpagePaperVideoSlidesShader & FiltersCode & Data

Abstract: We present Neural Network Ambient Occlusion (NNAO), a fast, accurate screen space ambient occlusion algorithm that uses a neural network to learn an optimal approximation of the ambient occlusion effect. Our network is carefully designed such that it can be computed in a single pass - allowing it to be used as a drop-in replacement for existing screen space ambient occlusion techniques.

github twitter rss