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Fig. 1. Visualization of the predictions of the world model, which is used by our method as an approximate differentiable physics simulator.

In this paper we show how the task of motion tracking for physically simu-
lated characters can be solved using supervised learning and optimizing a
policy directly via back-propagation. To achieve this we make use of a world
model trained to approximate a specific subset of the environment’s transi-
tion function, effectively acting as a differentiable physics simulator through
which the policy can be optimized to minimize the tracking error. Compared
to popular model-free methods of physically simulated character control
which primarily make use of Proximal Policy Optimization (PPO) we find
direct optimization of the policy via our approach consistently achieves a
higher quality of control in a shorter training time, with a reduced sensitivity
to the rate of experience gathering, dataset size, and distribution.
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1 INTRODUCTION
In recent years Reinforcement Learning (RL) has been shown to
consistently achieve state-of-the-art results on a large number of
physically simulated character control tasks - and the ability to track
high quality motion capture data with a physically simulated char-
acter is now well within the reach of both animation researchers
and practitioners. Many of these works make use of Proximal Policy
Optimization (PPO), a popular, on-policy Reinforcement Learning
algorithm that has been shown to work effectively on a vast range of
different problems and applications. However, like many Reinforce-
ment Learning algorithms, PPO is notoriously sample inefficient,
sensitive to hyper-parameter settings, class or data imbalance, gym
design, reward and feature design, and even the random seed [Hen-
derson et al. 2017]. This makes wide adoption of such methods in
areas like video games difficult, as the unpredictability of the algo-
rithm’s success can make it a risky choice in a production setting.
In this work we show how the most common task in physically

simulated character control - motion tracking - can instead be for-
mulated using only supervised learning such that a control policy
can be optimized for directly using back-propagation of a tracking
loss. This can be interpreted in two ways: as a form of model-based
learning, but also as a supervised learning problem where two mod-
els are learned simultaneously - one to predict the dynamics of the
world, and another which attempts to produce the optimal actions
which minimize the tracking losses. We find our approach achieves a
better quality of animation within a shorter training time than PPO,
with a reduced sensitivity to the rate of experience gathering and
data imbalance, which we show on a large variety of challenging
tracking tasks.

Our method relies on four key observations: first, that the reward
or loss function for the motion tracking task is generally a simple,
differentiable function of the kinematic and simulated character
states. Second, that the transition function of these two individ-
ual character states is partially separable; generally the kinematic
character’s behaviour does not change because of the simulated
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character’s behaviour. Thirdly, that the transition function of the
simulated character is entirely the result of a deterministic physics
simulation, and as such can be approximated effectively by a basic
feed-forward neural network. And finally, that by approximating
the physics simulation with a neural network we produce an ap-
proximate differentiable physics simulator through which the policy
can be optimized for directly via back-propagation of the tracking
losses.

The core of our method consists of two neural networks: theworld
model, which is trained to predict the next simulated character state
given the previous simulated character state and the provided PD
targets, and the policy which is trained to produce PD offsets given
the simulated and kinematic character states, with the objective
that the resulting simulated character state, when passed through
the world model, should match the target kinematic character state.
Although in theory these networks can both be trained offline given
a large enough dataset, due to the vast data coverage required we
set up an interactive training environment resembling an RL gym
that writes data into a large cyclic buffer, training each network in
tandem on random samples from this buffer.
To evaluate our method we train it on a number of different

challenging tracking tasks and compare its performance to PPO in
terms of motion quality, training time, and other design decisions.

2 RELATED WORK
In this section we give a brief overview of related research including
model-based methods, learned world models, model-free methods,
and specific works on motion tracking.

2.1 Model-based Learning
Model-based approaches utilize an underlying model of the physical
system to achieve motion control. The model allows optimization
to be used to solve control problems, either by directly exploiting
the structure of the model itself [Brown et al. 2013; Coros et al.
2010; da Silva et al. 2008; Eom et al. 2019; Hong et al. 2019; Jain and
Liu 2011; Lee et al. 2010; Macchietto et al. 2009; Muico et al. 2009;
Yin et al. 2007], or by using black-box, gradient-free optimization
methods [Hämäläinen et al. 2014, 2015; Lee et al. 2014; Liu et al.
2015, 2010; Naderi et al. 2017; Sok et al. 2007]. Given the model,
an optimization can be performed either offline or online to find
the actions which achieve the desired goals for a specific state.
While gradient-free optimization can be applied more generally
than optimizations designed for limited, specific domains, it often
struggles when the dimensionality of the action space grows.
Differentiable models allow gradient-based optimization to be

leveraged in a way which scales far better as the number of control
parameters increases [Tassa et al. 2012; Todorov et al. 2012], but is
hard to formulate beyond specific tasks, and even with gradients, it
is not always clear how to use these models to optimize for policies
that achieve desired behaviours rather than specific actions limited
to individual states [Ding et al. 2015; Liu et al. 2016]. Model-based
reinforcement learning is one way to do this, and provides a frame-
work for learning a policy from just a reward signal by optimizing
for the control policy that takes actions which maximize the ex-
pected discounted return [Janner et al. 2019]. However, model-based

reinforcement learning is often just as difficult to apply in the gen-
eral case. Sometimes models can be designed from first principles
using domain expertise [Tassa et al. 2012], or a hybrid approach
can be used where an approximate parameterized model is fit to
limited data (often called “system identification” [Ljung 1999]). Yet,
usually as system complexity grows manual model design becomes
impractical.

2.2 Learned World Models
In an attempt to obtain a differentiable model of a complex system,
one approach (and indeed the one proposed in this paper) is to train
a generic differentiable model such as a neural network on observa-
tions of the system in a supervised way, providing a differentiable
approximation which can be used to perform gradient-based opti-
mization of control policies [Nagabandi et al. 2017; Schmidhuber
1990]. These World Models [Ha and Schmidhuber 2018], can take
many forms, but are often trained to approximate the transition
function of the environment - to predict the next state given the
previous state and the action taken [Chiappa et al. 2017; Dosovitskiy
and Koltun 2016; Sutton 1991]. This approach, however, comes with
its own challenges as many of the elements of the environment may
not be included in the observations, may be stochastic in nature, or
may change independently of the agent’s actions. In the general case
this makes learning the transition function difficult as it must be a
probabilistic function [Deisenroth and Rasmussen 2011; Depeweg
et al. 2017; Higuera et al. 2018], trained on enough data to break
spurious correlations between actions and observations [Wahlström
et al. 2015], and handle well the prediction of sparse yet important
events [Oh et al. 2015]. In this work we sidestep the majority of
these issues by limiting our world model to just the subset of the
transition function which is affected by the agent’s actions: the
result of the deterministic physics simulation.

Our method can therefore be categorized as a model-based learn-
ing method that uses a learned world model. As such, Grzeszczuk et
al. [1998] is perhaps the most similar previous work to our approach,
as they also train a learned world model to predict the dynamics
of an expensive physics simulation. This world model is then used
to generate physically-based animation clips using gradient-based
trajectory optimization. Our work could be viewed as adding an
additional step that attempts to memorize the results of this opti-
mization in the form of the policy network function.

2.3 Model-free Learning
As with the training of world models, it is often easier to make mea-
surements of a complicated system’s dynamics than it is to design
an accurate, flexible model which can be exploited efficiently to
build a policy that can achieve the desired behaviors. Model-free
reinforcement learning exploits this fact and uses measurements
of the response of various states of the environment to various
actions to optimize a policy without any knowledge of the underly-
ing dynamics. This makes it attractive for the purposes of solving
physical control problems where effects like friction, air resistance,
actuator dynamics, contact response, etc. are notoriously difficult
to accurately model [Hwangbo et al. 2019]. However, since many
model-free methods are highly sample-inefficient, they are best
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suited to simulated environments where samples are easy and quick
to obtain. Physics engines developed for games [Coumans 2015;
Havok 2021; PhysX 2021] are a good example of this, and are often
treated as black-box simulators for this purpose.
One of the most popular model-free algorithms currently used

for control tasks is Proximal Policy Optimization [Schulman et al.
2017] (PPO), which has been applied in a variety of state-of-the-art
control-related research on human characters [Bergamin et al. 2019;
Clegg et al. 2018; Hu et al. 2020; Lee et al. 2019; Liu and Hodgins
2018; Luo et al. 2020; Merel et al. 2019a,b; Park et al. 2019; Peng
et al. 2018a, 2021; Won et al. 2020; Won and Lee 2019; Xie et al. 2020;
Yu et al. 2018], and has proven itself as one of the most popular
on-policy learning algorithms available when sample inefficiency is
of no great concern.

2.4 Motion Tracking
Many works on motion tracking have focused on the emergence of
locomotion-like behaviour from simple objectives or carefully de-
signed heuristics [Coros et al. 2010; Di Carlo et al. 2018; Geijtenbeek
and Pronost 2012; Heess et al. 2017; Naderi et al. 2017; Raibert and
Hodgins 1991; Sok et al. 2007; Yin et al. 2007]. However, a desire for
more realistic animation has brought a focus onto the use of motion
capture data [Hong et al. 2019; Liu and Hodgins 2018, 2017; Liu et al.
2016, 2015, 2010], or even video [Peng et al. 2018b], as a tracking
reference. The most recent motion tracking works primarily use
PPO, and provide a “tracking reward” for how closely the animation
data is followed [Bergamin et al. 2019; Chentanez et al. 2018; Luo
et al. 2020; Merel et al. 2019b; Park et al. 2019; Peng et al. 2018a,
2021; Won et al. 2020; Yu et al. 2018]. Surprisingly, there is very little
work applying model-based RL for motion imitation, with most
instances being applied on smaller problems [Zhou et al. 2019], or
as benchmarks [Brockman et al. 2016]. To our knowledge, we are
the first to apply a learned world model to the problem of motion
tracking at such a large scale.

3 METHODOLOGY
In this section we describe the training environment, the represen-
tation we use for the simulated and kinematic characters, and the
training algorithm we use to optimize the world model and policy.

Fig. 2. Visual overview of the training procedure for the world model where
red dotted lines represent the back-propagation of the losses. HereW is
the world model, 𝑃𝑖 is the world model predicted state, 𝑆𝑖 is the ground
truth state,𝑇𝑖 is the policy PD-target output.

Algorithm 1: Algorithm for training the world modelW.
Function TrainWorldModel(S, T, 𝑁W , 𝜽W , 𝑑𝑡):

/* Set initial predicted state */

P0 ← S0
/* Predict P over a window of 𝑁W frames */

for 𝑖 ← 0 to 𝑁W − 1 do
/* Predict rigid body accelerations */

¥p𝑙𝑝
𝑖
, ¥p𝑙𝑟

𝑖
← W([Local(P𝑖 ) T𝑖 ]𝑇 ;𝜽W )

/* Convert accelerations to world space */

¥p𝑝
𝑖
, ¥p𝑟

𝑖
← p𝑟𝑜𝑜𝑡𝑟

𝑖
⊗ ¥p𝑙𝑝

𝑖
, p𝑟𝑜𝑜𝑡𝑟

𝑖
⊗ ¥p𝑙𝑟

𝑖

/* Integrate rigid body accelerations */

P𝑖+1 ← Integrate(P𝑖 , ¥p𝑝𝑖 , ¥p
𝑟
𝑖
, 𝑑𝑡)

end
/* Compute losses */

L𝑝𝑜𝑠 ← 𝑤𝑝𝑜𝑠
∑
𝑖

 s𝑝
𝑖
− p𝑝

𝑖


1

L𝑣𝑒𝑙 ← 𝑤𝑣𝑒𝑙
∑
𝑖

 ¤s𝑝𝑖 − ¤p𝑝𝑖 
1

L𝑟𝑜𝑡 ← 𝑤𝑟𝑜𝑡
∑
𝑖

 s𝑟
𝑖
⊖ p𝑟

𝑖


1

L𝑎𝑛𝑔 ← 𝑤𝑎𝑛𝑔
∑
𝑖

 ¤s𝑟
𝑖
− ¤p𝑟

𝑖


1

/* Update network parameters */

𝜽W ← RAdam(𝜽W ,∇∑∗ L∗)
end

3.1 Environment
To allow for enough data to be collected we set up a training envi-
ronment that closely resembles an RL gym similar in style to that
of DeepMimic [Peng et al. 2018a]. We simulate 256 different articu-
lated characters in parallel with motors at each joint, driven by PD
controllers, with the goal of tracking some corresponding kinematic
animation taken from a motion capture database. Whenever some
maximum episode length is exceeded, or some minimum episode
length has been obtained and the character’s head height has devi-
ated from the reference by more than 25cm, reference state initial-
ization [Peng et al. 2018a] is used to reset the simulated character to
a random pose from a random animation in the kinematic animation
database, with vertical correction applied to avoid ground penetra-
tions. We use a maximum episode length of 512, a minimum episode
length of 48, and provide an option to apply resets with respect to
some user-provided probability distribution over animations. Once
an episode terminates, the samples from the environment are added
to a large cyclic data buffer (see Section 3.5 for more details). This
setup generates data at a rate of ∼5000 samples per second. For more
details on our simulation settings please see Section 5.3.

3.2 Representation
To represent the state of a given character X we use the world space
positions x𝑝 ∈ R3𝐵 , velocities ¤x𝑝 ∈ R3𝐵 , rotations x𝑟 ∈ R4𝐵 , and
rotational velocities ¤x𝑟 ∈ R3𝐵 of all the associated rigid bodies, X =

{x𝑝 ¤x𝑝 x𝑟 ¤x𝑟 }, where 𝐵 is the number of rigid bodies. Here, rotations
are represented as quaternions. We use the same representation for
both the kinematic character K and the simulated character S.
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Fig. 3. Visual overview of the training procedure for the policy where red
dotted lines represent the back-propagation of the losses. HereW is the
world model, 𝑃𝑖 is the world model predicted state, Π is the policy,𝑇𝑖 is the
policy PD-target output, 𝐾𝑖 is the kinematic state.

To represent the simulated character’s PD targets T we use the
target rotation t ∈ R4𝐽 and target rotational velocity ¤t ∈ R3𝐽 for
each joint T = {t ¤t}, where 𝐽 is the number of joints. The PD offsets
computed by the policy o ∈ R3𝐽 are represented using vectors
which are converted to rotations via the exponential map [Grassia
1998]. These are multiplied by the joint rotations of the kinematic
character k𝑡 ∈ R4𝐽 to get the final PD targets t = exp

(
𝛼
2 o

)
⊗ k𝑡 ,

where 𝛼 provides a way to adjust the overall scaling of the offsets.
Since our method only applies offsets to the target rotations, the PD
target rotational velocities ¤t are simply copied over directly from
the rotational velocities of the joints of the kinematic character
¤k𝑡 ∈ R3𝐽 , ¤t = ¤k𝑡 or set to zero in physics simulators which do not
support them ¤t = 0. See Section 5.1.3 for more information.

3.3 Network Inputs
The global space coordinates described in the previous section are
inappropriate to provide to a network directly as they are not trans-
lation or rotation invariant, and the raw quaternions have issues of
double-cover [Pavllo et al. 2019]. Instead, a number of pre-processing
steps are required to prepare the network inputs: first, we convert
the rigid body coordinates into the character space by multiply-
ing by the inverse of the root rigid body transform (typically the
hip transform). Next, we convert quaternions into the two-axis
rotation matrix format commonly used in neural network based
methods [Zhang et al. 2018]. Then, we append to the representation
the heights of all the rigid bodies from the ground as well as the up
direction (in our case +Z), local to the root rigid body. This gives
the network the direction of gravity and the distance of each limb
to the floor, which can be used to infer contact information:

Local(X) = {x𝑙𝑝 ¤x𝑙𝑝 x𝑙𝑟 ¤x𝑙𝑟 xℎ x𝑢𝑝 }, (1)

x𝑙𝑝 ∈ R3𝐵 = Inv(x𝑟𝑜𝑜𝑡𝑟 ) ⊗ (x𝑝 − x𝑟𝑜𝑜𝑡𝑝 ), (2)

¤x𝑙𝑝 ∈ R3𝐵 = Inv(x𝑟𝑜𝑜𝑡𝑟 ) ⊗ ¤x𝑝 , (3)

x𝑙𝑟 ∈ R6𝐵 = TwoAxis(Inv(x𝑟𝑜𝑜𝑡𝑟 ) ⊗ x𝑟 ), (4)

¤x𝑙𝑟 ∈ R3𝐵 = Inv(x𝑟𝑜𝑜𝑡𝑟 ) ⊗ ¤x𝑟 , (5)

xℎ ∈ R𝐵 = Height(x𝑝 ), (6)

x𝑢𝑝 ∈ R3 = Inv(x𝑟𝑜𝑜𝑡𝑟 ) ⊗ [0 0 1]𝑇 . (7)

Here “TwoAxis” converts from quaternion to rotation matrix and
extracts the first two columns, “Height” computes the heights of
the rigid bodies relative to the ground plane or height-map, x𝑟𝑜𝑜𝑡𝑝

and x𝑟𝑜𝑜𝑡𝑟 are used to denote the world space root position and ori-
entation of the character, and ⊗ represents quaternion-quaternion
multiplication or quaternion-vector product when multiplying by a
vector.

Algorithm 2: Algorithm for training the policy Π.
Function TrainPolicy(S0, K, W, 𝑁Π, 𝜽Π, 𝜎, 𝛼, 𝑑𝑡):

/* Set initial predicted state */

P0 ← S0
/* Predict P over a window of 𝑁Π frames */

for 𝑖 ← 0 to 𝑁Π − 1 do
/* Predict PD offsets */

o𝑖 ← Π( [Local(P𝑖 ), Local(K𝑖+1)]𝑇 ;𝜽Π)
/* Add noise to offsets */

ô𝑖 ← o𝑖 + 𝜎 N(0, 1)
/* Compute PD targets */

T𝑖 ← { exp
(
𝛼
2 ô𝑖

)
⊗ k𝑡

𝑖+1,
¤k𝑡
𝑖+1}

/* Pass through world model */

¥p𝑙𝑝
𝑖
, ¥p𝑙𝑟

𝑖
← W([Local(P𝑖 ) T𝑖 ]𝑇 ;𝜽W )

/* Convert accelerations to world space */

¥p𝑝
𝑖
, ¥p𝑟

𝑖
← p𝑟𝑜𝑜𝑡𝑟

𝑖
⊗ ¥p𝑙𝑝

𝑖
, p𝑟𝑜𝑜𝑡𝑟

𝑖
⊗ ¥p𝑙𝑟

𝑖

/* Integrate rigid body accelerations */

P𝑖+1 ← Integrate(P𝑖 , ¥p𝑝𝑖 , ¥p
𝑟
𝑖
, 𝑑𝑡)

end
/* Compute Local Spaces */

P𝑙 , K𝑙 ← Local(P), Local(K)
/* Compute losses in Local Space */

L𝑙𝑝𝑜𝑠 ← 𝑤𝑙𝑝𝑜𝑠
∑
𝑖

 p𝑙𝑝
𝑖
− k𝑙𝑝

𝑖


1

L𝑙𝑣𝑒𝑙 ← 𝑤𝑙𝑣𝑒𝑙
∑
𝑖

 ¤p𝑙𝑝𝑖 − ¤k𝑙𝑝𝑖 
1

L𝑙𝑟𝑜𝑡 ← 𝑤𝑙𝑟𝑜𝑡
∑
𝑖

 p𝑙𝑟
𝑖
− k𝑙𝑟

𝑖


1

L𝑙𝑎𝑛𝑔 ← 𝑤𝑙𝑎𝑛𝑔
∑
𝑖

 ¤p𝑙𝑟𝑖 − ¤k𝑙𝑟𝑖 
1

Lℎ𝑒𝑖 ← 𝑤ℎ𝑒𝑖
∑
𝑖

 pℎ
𝑖
− kℎ

𝑖


1

L𝑢𝑝 ← 𝑤𝑢𝑝
∑
𝑖

 p𝑢𝑝
𝑖
− k𝑢𝑝

𝑖


1

L𝑙𝑟𝑒𝑔 ← 𝑤𝑙𝑟𝑒𝑔
∑
𝑖 ∥ o𝑖 ∥22

L𝑠𝑟𝑒𝑔 ← 𝑤𝑠𝑟𝑒𝑔
∑
𝑖 ∥ o𝑖 ∥1

/* Update network parameters */

𝜽Π ← RAdam(𝜽Π,∇
∑
∗ L∗)

end
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Finally, before being provided as input to the network, we nor-
malize each quantity by its mean and standard deviation which we
compute from a database of kinematic data offline before training.

3.4 World Model
To train the world modelW first we sample a window of 𝑁W = 8
frames from the data buffer. We then extract the simulated states
S, and the PD targets T which were used at those simulation states.
Starting with the first frame in the buffer S0, the state and PD targets
are input into the networkW, and the rigid body positional, and
rotational accelerations local to the root rigid body are computed
as output ¥x𝑙𝑝 ∈ R3𝐵, ¥x𝑙𝑟 ∈ R3𝐵 . These are then converted into the
world space ¥x𝑝 , ¥x𝑟 by multiplying by the root rigid body rotation,
and integrated with the current state to find the next state:

Integrate(X, ¥x𝑝 , ¥x𝑟 , 𝑑𝑡) = {y𝑝 ¤y𝑝 y𝑟 ¤y𝑟 }, (8)

¤y𝑝 = 𝑑𝑡 ¥x𝑝 + ¤x𝑝 , (9)
¤y𝑟 = 𝑑𝑡 ¥x𝑟 + ¤x𝑟 , (10)

y𝑝 = 𝑑𝑡 ¤y𝑝 + x𝑝 , (11)

y𝑟 = exp
(
𝑑𝑡
2 ¤y

𝑟
)
⊗ x𝑟 . (12)

This next state is then fed into the network again and the pro-
cess continues until a whole window of predicted states has been
computed. The difference between this prediction P and the ground
truth S is then computed, and network weights updated to minimize
this loss. For more details please see Algorithm 1 and Fig 2. In the
loss function, weights𝑤𝑝𝑜𝑠 ,𝑤𝑣𝑒𝑙 ,𝑤𝑟𝑜𝑡 ,𝑤𝑎𝑛𝑔 , are tweaked to give
roughly equal contribution from all losses at the beginning of train-
ing and ⊖ represents quaternion difference - i.e. taking the log of the
result of the left-hand-side quaternion multiplied by the inverse of
the right-hand-side quaternion. This window-based training scheme
can be interpreted as teacher-forcing [Williams and Zipser 1989]
every 𝑁W frames. While this algorithm is presented for a single
sample, training is performed on mini-batches. For a visualization
of trained world model predictions please see Fig 1.

3.5 Policy
To train the policy Π we first sample a window of 𝑁Π = 32 frames
from the data buffer, extracting the initial simulated state S0 as well
as target kinematic states K. Then, the simulated state and initial
target kinematic state are fed into the policy to get the PD offsets o.
Gaussian noise scaled by 𝜎 = 0.1 is added to the offsets to encourage
state and action trajectory exploration, and the resulting offsets ô
are scaled by an overall scaling factor 𝛼 before being converted to
quaternions and multiplied by the kinematic character joint rota-
tions k𝑡 . These are then paired with the kinematic character joint
rotational velocities ¤k𝑡 to produce the final PD targets T. These PD
targets are then fed into the world model, along with the predicted
simulated state, to produce the next simulated state. This process is
then repeated until a full window of predicted states P have been
produced. The difference between this prediction and the target
kinematic states K is then computed in the local space, and the
losses used to update the weights of the policy. For more details,
please see Algorithm 2 and Fig 3. In the loss function, weights𝑤𝑙𝑝𝑜𝑠 ,

𝑤𝑙𝑣𝑒𝑙 ,𝑤𝑙𝑟𝑜𝑡 ,𝑤𝑙𝑎𝑛𝑔 ,𝑤ℎ𝑒𝑖 ,𝑤𝑢𝑝 are set to give roughly equal contribu-
tion from all losses at the beginning of training while regularization
weights 𝑤𝑙𝑟𝑒𝑔 and 𝑤𝑠𝑟𝑒𝑔 are given a smaller contribution by two
orders of magnitude and are used to penalize large PD offsets. While
this algorithm is presented for a single sample, training is performed
on mini-batches. This algorithm also matches the procedure per-
formed to gather training data in the training gym, but with the
real physics simulator used to obtain the next simulated state rather
than the world model.

3.6 Training
Our full training procedure is as follows: each iteration, first we
pull any new data from the environment into a large cyclic data
buffer of ∼150,000 samples, which contains the simulated character
S, kinematic character K, and PD targets used T. Next, we transfer
the current version of the policy Π to the environment. Finally, we
train the world modelW for a single step using Algorithm 1, and
the policy Π for a single step using Algorithm 2. This whole process
is then repeated. We start to see basic balancing behaviour after
about ∼10,000 iterations (which requires about two hours training
on a mid-tier graphics card such as a Nvidia GTX 1070), but we
found full training required ∼100,000 to ∼200,000 iterations, and
took closer to ∼20 to ∼40 hours depending on the exact hardware,
training setup, and desired tracking performance. For full details of
the hyper-parameters used please see Table 1 and for more details
on training times please see Table 2.

Table 1. Hyper-parameter settings used by our method.

World Model

Hidden Layers 5
Hidden Units 1024
Activation ELU
Batchsize 2048
Learning Rate 0.001
Window (𝑁W ) 8

Policy

Hidden Layers 5
Hidden Units 1024
Activation ELU
Batchsize 1024
Learning Rate 0.0001
Window (𝑁Π) 32

Other Noise Scale (𝜎) 0.1
Offset Scale (𝛼) 120

4 RESULTS
In this section we show the results of our method on several differ-
ent animation databases as well as on interactive control. All results
are shown using the PhysX [PhysX 2021] physics simulator unless
otherwise mentioned. For more details please see supplementary
video and for full details on the exact specifications of all the dif-
ferent databases used please see Table 2. To measure the success
of our method, we compute the Survival Rate, which is defined as
the percentage of episodes that last longer than a given time with-
out the character reaching a failed state (shown in Fig 4). A failed

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.



1:6 • Fussell et al.

state is as described in Section 3. Here, if the character reaches the
end of the animation without failing we reset it to a new random
frame without adjusting the tracking timer and continue the episode.
We observe that the Survival Rate tends to reflect the overall size,
physical difficultly, and diversity of the database.

4.1 Motion Tracking
In Fig 5 we show the results of our method trained on the LaFAN
database [Harvey et al. 2020], a large, challenging, varied database
consisting of ∼6.5 hours of unstructured animation including danc-
ing, falls and get-ups, fighting, sports, crawling, rolling, hopping,
stumbles, and locomotion. In this case we limit our training to just
motions on the flat ground and re-target all animation to a uniform
character size. However, it should be noted that there are still many
motions in the database which are physically impossible to track,
such as one character pulling another character up by holding hands.
Unlike existing methods we achieve high quality animation track-
ing without requiring the database to be broken into clusters or the
training of specific experts for specific types of motions [Won et al.
2020] since we share the same policy across the whole database.

We also train our method on a medium sized database consisting
of ∼1.7 hours of locomotion in 30 different Styles. After training,
over 80% of episodes last more than a minute.

In Fig 6 we show the results of our method trained to track a small
∼6 minute database of athletic Dancemotions. Here we achieve high

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f e
pi

so
de

s

ST-Survival Rate

0 10 20 30 40 50 60
time (s)

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f e
pi

so
de

s

PPO-Survival Rate

LaFAN
Styles
Styles (LaFAN)

Dance
DReCon
Controller

Dog
Rough Terrain

Fig. 4. Plots showing the Survival Rate, or percentage of episodes which
last longer than a given time before failing, for various policies trained on
different databases. Here Styles (LaFAN) represents the policy trained on the
LaFAN database but tested on the Styles database to assess generalization
ability. PPO was not tested on the Rough Terrain database.

Fig. 5. Our method applied to a selection of challenging motions from the
LaFAN database.

quality, fluidmotion even for these difficult and dynamicmovements,
with over 95% of episodes lasting more than a minute.

Fig. 6. Results of our method on the Dance database.

4.2 Rough Terrain
Our method and state representation can extend to tracking anima-
tions navigating Rough Terrain. In Fig 7 we show results of this, with
a policy trained on a very large database consisting of ∼7 hours of
locomotion over both flat and rough terrain. This setup is particu-
larly challenging due to the fact that the simulated character cannot
be allowed to drift far from the kinematic character in the world
space, or the kinematic reference will no longer be appropriate for
the terrain around the simulated character’s position. We therefore
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Table 2. Details of the various databases tested.

Database #Frames #Bodies (𝐵) #Joints (𝐽 ) FPS (Hz) Training (hr)
LaFAN 1,442,572 20 19 60 40
Styles 378,200 20 19 60 20
Dance 20,844 20 19 60 20
DReCon 38,332 20 19 60 20
Controller 71,322 20 19 60 20
Dog 81,240 26 25 60 20
Rough Terrain 1,544,920 20 19 60 50

provide the policy with the kinematic and simulated character world
space difference in root position and rotation, add additional losses
penalizing this difference (so that the character learns to correct any
global drift), and terminate episodes as soon as the root position or
rotation deviate by more than 1 meter or 90◦.

4.3 Interactive Control
By pre-recording 10 to 20 minutes of user interaction with a kine-
matic controller, storing the resulting animation in a database, and
training a policy to track it, we can build policies suitable for interac-
tive control. In Fig 8 we show two examples of this, one responsive
kinematic Motion Matching controller, and a Dog controller similar
to the one shown in Holden et al. [2020]. We also include in our
results a Motion Matching controller built from the LaFAN database
similar to the one shown in DReCon [Bergamin et al. 2019].

Fig. 7. Results of our method tracking animation over rough terrain.

5 EVALUATION
In this section we perform an evaluation of our method, including
a detailed comparison against PPO, a study of how our method
performs in a transfer learning setting, and an evaluation of the
memory usage and performance. For comparing the performance
of policies, we track the average episode length over the course
of training. We scale this average value to be in the range [0, 1]
by dividing by the max episode length (in our case 512). A value
of 1 therefore indicates a 100% completion rate for episodes. For
all comparisons we use the same hardware for a fair evaluation (a
Nvidia GTX 1070).

5.1 Comparison to PPO
In this section we perform a range of comparisons between our
approach and PPO. These comparisons include examining variance

Fig. 8. Our method applied to interactive control.

due to changing of the random seed, behavior when re-scaling losses
or rewards, changing of the physics simulator, large data imbalance,
experience gathering rate, policy synchronization rate, and robust-
ness to perturbations. All comparisons are performed using the
PhysX simulator and on the LaFAN database unless otherwise men-
tioned. Overall we found that while PPO performed well on smaller
databases, on LaFAN it did not perform nearly as well, presumably
due to the size, diversity, and range of motions contained within.
See Fig 4 for more details.

Our PPO policy uses the same state and action representation as
described in previous sections, but with a slightly smaller network
size. Although previous works have found larger network sizes
to perform both better [Wang et al. 2020] and worse [Bergamin
et al. 2019], we found only a very minor trend toward increased
performance from smaller networks (see Fig 10). For the policy ac-
tion distribution we use a Gaussian with a fixed standard deviation
scaled by 𝜎 , similar to Algorithm 2, but using the slightly higher
value of 0.2 as we found it improved performance. The gym environ-
ment, including the use of reference state initialization, is identical
to the gym used for our approach. The reward structure is similar
to that of Bergamin et al. [2019] but incorporates some additional
terms to more closely resemble the losses used in this paper:

𝑟 = 𝑤𝑟𝑒𝑤 exp (−(L𝑙𝑝𝑜𝑠 + L𝑙𝑣𝑒𝑙 + L𝑙𝑟𝑜𝑡 + L𝑙𝑎𝑛𝑔 + L𝑙ℎ𝑒𝑖 + L𝑙𝑢𝑝 ))

where all terms here are the same as described in Algorithm 2
but with weights slightly adjusted to give a better balance of contri-
bution (they are calculated for a single frame rather than a window
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of frames), and𝑤𝑟𝑒𝑤 = 1 /
√

0.05
1−𝛾 used to scale the overall reward.

All other hyper-parameters for training PPO are outlined in Table 3.

5.1.1 Random Seed. In Fig 9 we show results of training each algo-
rithm on three different random seeds. Overall, both PPO and our
method (ST) are relatively consistent and don’t show much vari-
ance across runs. This could be due to the reward definition which
imposes quite strict constraints on the motion and may therefore
lead to fewer local minima.
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Fig. 9. Comparison of our method and PPO in terms of changing the
random seed, loss scale, and simulator. Dotted lines indicate the baseline
performance of the algorithms.

Table 3. Hyper-parameters for PPO.

Hidden Layers 2
Hidden Units 256
Activation ELU
Policy Learning Rate 0.0001
Critic Learning Rate 0.001
Discount Factor (𝛾 ) 0.99
GAE-𝜆 0.95
Sample Size 8192
Batchsize 512
Noise Scale (𝜎) 0.2
Offset Scale (𝛼) 120

5.1.2 Loss Scale. We found both methods were relatively robust
to scaling of the loss terms. In Fig 9 we show one example where
we increase the scale of the𝑤𝑙𝑣𝑒𝑙 loss term by a factor of ×5. Again,
PPO’s reward definition being amultiplication of terms likely lessens
the effect of any one loss component having more influence on the
motion imitation than another.

5.1.3 Physics Simulator. In Fig 9 we compare results across three
different simulators: PhysX [PhysX 2021], Havok [Havok 2021],
and Bullet [Coumans 2015]. Since Bullet and Havok do not easily
support PD target rotational velocities we set these to zero instead
of using the rotational velocities of the joints of the kinematic char-
acter. We find our method’s final performance is reasonably similar
across simulators while PPO’s final performance varies a little more,
potentially due to the different rates of experience gathering. See
supplementary video for a visual comparison.

5.1.4 Data Imbalance. In this experiment we take the original data-
base used to make the Motion Matching controller shown in our
results, which has tags for different motion types such as Idle,Walk,
Crouch, Jog, and Run. We then over-sample animations tagged as
Walk by a factor of ×10. Our method is robust to changes in the
tag distribution and stable run, jog, and crouch motions appear
after about 1.5 hours. When changing the tag distribution for PPO,
even after 10 hours of training, no motion other than walking is sta-
ble. Fig 11 shows this result and marks the point where our method
had learned stable motions other than walking.

5.1.5 Experience Gathering. In this experiment we artificially re-
duce the rate of experience gathering in our gym environment by a
factor of about ×3 by throwing away 70% of gathered episodes at
random. In Fig 11 we can see that PPO trains twice as slowly while
our method is largely unaffected. This is due to the off-policy and
sample-efficient nature of our method compared to PPO, which we
found was often bounded in performance by the rate of experience
gathering in our experiments.

5.1.6 Policy Synchronization. Our method is off-policy - neither the
world model nor the policy require the generated data to come from
the same policy. To show this, we perform an experiment where the
policy used to sample data from the gym is not the same as the most
recently updated policy. Instead, we use a policy for the gym that is
N training steps behind the current trained policy and we refer to N
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as the policy synchronization interval. As expected PPO, being an
on-policy algorithm cannot function under these conditions yet our
method is largely unaffected by the synchronization interval. Fig 9
shows the results of training on policy synchronisation intervals of
15 and 100 iterations.

5.1.7 Robustness. We evaluate the robustness to perturbations of
policies that were trained for 20 hours with both PPO and our
method. Cubes of increasing mass are thrown at the character at a
rate of once per second with a speed of 5𝑚/𝑠 and we measure the
resulting episode completion rate. In Fig 13 we see that given equal
training time PPO is not more robust than our method.
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Fig. 10. Comparison of different model sizes for PPO. For policy width we
use a depth of two hidden layers and for policy depth we use 128 hidden
units.

5.2 Generalization & Transfer Learning
Unlike RL methods which can often struggle to generalize and
transfer to new tasks [Bengio et al. 2020], both the world model
and policy in our setup can generalize to, and be fine-tuned on,
new databases. To test the generalization performance we apply the
more generic LaFAN policy to the Styles database (denoted “Styles
(LaFAN)” in Fig 4) and find it can track well a considerable part of
the database, none of which it has seen during training.
We can also fine-tune previously trained policies to new tasks.

In Fig 12 we show how initializing the policy and world model of
the Styles task with the more generic LaFAN policy can accelerate
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Fig. 11. Comparison of our method and PPO on experience gathering rate,
data imbalance, and policy synchronization interval. Dotted lines indicate
the baseline performance of the algorithms. For "Data Imbalance", a vertical
line marks the approximate time when our method was able to performing
stable running motions.

training. For transferring the policy, we freeze all weights except
the final layer and set the policy learning rate to a very small value
so that the policy does not change drastically during training. The
world model initialization and training does not change. We also test
the ability to transfer just the world model and train a new policy
from scratch. Here we can make use of a higher policy learning rate
due to having an accurate world model early in training and the
world model learning rate is reduced to prevent instability.
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Fig. 12. Transfer learning from the LaFAN database to the Styles database.
We explore both transferring the world model, and transferring the world
model and the policy. The horizontal line indicates the untrained LaFAN
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Fig. 13. Comparison of our method to PPO in terms of robustness to
perturbations. We find our method produces policies more robust over a
range of perturbation sizes.

5.3 Performance
In general our method has similar performance characteristics to
existing methods of physically simulated character control using
PPO. Policy network evaluation is performed every frame, takes
∼1800𝜇s, and requires ∼20MB of storage for the network weights.
World model performance and memory usage is similar. We run our
physics simulations at 240 Hz, with 20 iterations of the constraint
solver, which typically takes between 300𝜇s and 1000𝜇s per-frame
depending on the simulator used. All performance tests were run
on an Intel Xeon E5-1650 CPU.

6 ABLATION
In this section we present an ablation study for some of the im-
portant aspects of our method. These include the window size for
both the policy and world model, the use of PD offsets rather than
absolute PD targets, and the prediction of accelerations rather than
velocities in the world model. As before, we try to keep the hardware
consistent within experiments where it is important for the analysis.

We indicate in the experiment if the hardware differs within the
experiment.

6.1 Window Size
A window-based training scheme allows a model to learn longer-
range predictions in a more stable way than single-step predictions.
For the policy training, a larger window is needed for learning
motions where long-term apprehension is required, such as taking
a step in a walk cycle. However, the quality of the policy’s actions
over these longer-term horizons relies on the world model’s long
term prediction accuracy. Meanwhile, having a world model training
window size that is too large can decouple the predicted states from
the target states which can cause the world model to ignore the
actions taken. Fig 15 demonstrates the effect of changing the relative
training window size of the world model and policy. If we set the
policy window to 64 the training becomes unstable and terminates.
We found that a policy window of 32 and world model window of 8
were consistently stable across all the tasks we tried.

6.2 PD Offsets
In our setup, the policy predicts PD offsets which are converted to
quaternions and multiplied by the kinematic character joint rota-
tions. Alternatively, the policy could directly predict the PD targets
without using the kinematic character joint rotations as a basis,
as is done in some previous work [Peng et al. 2018a; Won et al.
2020]. Fig 15 shows the result of this, and confirms that predicting
the offsets is more accurate and learns faster as the kinematic joint
rotations provide a good starting point close to the target motion.

6.3 World Model Accelerations
The world model predicts the accelerations of the rigid bodies and
this is integrated to compute the velocities and then the positions.
Alternatively, the world model could directly predict the veloci-
ties. Fig 15 compares these two methods and shows the effectiveness
of using the accelerations.

7 LIMITATIONS
In our method certain settings such as having the learning rate
too high or low, or having window sizes 𝑁W , 𝑁Π set poorly can
negatively affect the training time or stability - and with an already
long training time - even an adjustment that causes training to take

Fig. 14. Visualisation of the trained world model predictions for 32, 64, and
128 frames. Beyond 64 frames, the world model struggles to maintain the
joint constraints for accurate pose prediction.
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Fig. 15. Results of the ablation experiments from top to bottom: varying the
window sizes for the policy & world model, predicting PD offsets compared
to absolute PD targets, and predicting rigid body accelerations compared
to velocities using the world model.

twice as long can quickly make running tests and experiments
impracticable.
Our method is also only shown on the control task of motion

tracking, and while we believe it should be possible to extend it to
achieve any goal which does not change due to the simulated char-
acter’s behaviour and can be expressed as a differentiable function
of the character states, this is not something we tested.
Unlike RL based methods which have a theoretically infinite

look-ahead horizon controlled by the discount factor, the look-
ahead of our method is limited to the policy window size 𝑁Π. This
means high-level tasks which require apprehension at a larger time
scale than the window size will be very difficult for our method
to learn. Simply increasing the window size is not a good solution
as it increases the instability of training due to the recurrent, auto-
regressive feedback of the prediction, and errors in the world model
prediction will compound if the window is too large, as shown
in Fig 14. Although we found gradient clipping to help somewhat in
this respect, our method is still most likely limited to control tasks
with fairly short-term, dense rewards such as motion tracking.

8 DISCUSSION AND FUTURE WORK
While PPO utilizes empirical estimates of the gradients to optimize
the policy, our approach computes an analytical gradient. This has
both pros and cons - on the one hand we are capable of achieving
accurate tracking for all rigid bodies and their velocities since our
policy always moves in the direction which best optimizes all the
different loss components together. Empirically our method also
seems to scale better to larger network sizes. On the other hand, our
method does not exploit exploration in the same way as PPO, and
it can be more difficult for it to discover novel behaviours such as
stepping motions to recover from falls, as these kinds of behaviours
do not typically lie on a direct downward gradient from the current
policy and can require a more exploratory search method to discover.
This means artifacts such as foot sliding can appear in some motions
where the short-horizon motion tracking loss is not able to plan as
far ahead as PPO’s longer-horizon returns.

Stable and accurate world model predictions are necessary for our
method to be successful. In order to achieve this in the high dimen-
sional state space it’s important to use a translation and rotation-
invariant state representation as well as a window-based training
scheme. Similarly, by limiting the world model to learning only the
subspace of possible dynamics close to the kinematic character’s
movements we can significantly simplify the learning task. The
stability of long-term predictions could potentially be improved in
the future by additionally learning a compressed, latent, encoding
of the character state and performing the physical integration in
this space.
We found that during inference it’s possible to use our world

model as an approximate replacement of the real physics simulation
it is trained on. However, in our case this is often more expensive
than the original simulation due to the relatively large network size.
In our setup we only predict the PD target rotation offsets, but

it would be interesting to also try and predict target rotational
velocity offsets as well as other parameters for the PD controls
such as stiffness and damping coefficients. As long as these are also
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provided as input to the world model we believe this would be a
straightforward extension of our work.
Additionally, the off-policiness of our approach provides inter-

esting benefits for the motion tracking problem domain which we
only explored briefly in this work. Making use of a more general
world model or efficiently transferring a world model across differ-
ent domains and task definitions could improve the training time
and make physics-based character motion tracking more accessible
in terms of compute.

Finally, our approach should be equally applicable in other meth-
ods of physically-based motion imitation such as those that replace
the supervised tracking loss with a discriminator loss [Ho and Er-
mon 2016; Peng et al. 2021; Xu and Karamouzas 2021].

9 CONCLUSION
In this paper we present a method for motion tracking of physically
simulated characters that uses supervised learning to produce a
differentiable world model. This allows control policies to learn
optimal actions directly via gradient-descent by minimizing the
tracking losses over finite horizons. We present our results on a
number of difficult and varied tracking tasks, and provide an in-
depth comparison to PPO, evaluating the training time, motion
quality, and sensitivity to various hyper-parameter settings and
other high level design decisions.
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